
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP023854
TITLE: Dynamic Resource Allocation in an HPC Environment

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Proceedings of the HPCMP Users Group Conference 2004. DoD
High Performance Computing Modernization Program [HPCMP] held in
Williamsburg, Virginia on 7-11 June 2004

To order the complete compilation report, use: ADA492363

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP023820 thru ADP023869

UNCLASSIFIED

Dynamic Resource Allocation in an HPC Environment

Duane A. Gilmour and James P. Hanna Gary Blank
Air Force Research Laboratory, Information Metron, Inc., Solana Beach, CA
Directorate (AFRL/IF), Advance Computing blank@ca.metsci.com

Technology Branch, Rome, NY
{gilmourd, hannaj } @rl.af.mil

Abstract can be defined as a course of action (COA)1l".
Traditionally, friendly COAs are wargamed against the

Analysts within the military strategic planning "most likely" and "most dangerous" adversary COAs,
process need to be able to anticipate and respond in real- herein referred to as eCOA. Wargaming is a recorded
time to a dynamically changing battlespace i c er "what if" session of actions and reactions designed toactions. The capability is required to accept current visualize the flow of the battle and evaluate each friendlyinformation into a simulation and rapidly peer into the COA t21. This is a highly manpower intensive process thatfuture at any given moment to derive hypotheses about doesn't account for a dynamically changing situation.future alternatives. It is virtually impossible to identify or The number of COAs wargamed is limited due to thepredict the specc details of what might transpire. Our enormous manpower resources required to evaluate eachpredct he pecficdetilsof wat igh trnspre.Our scenario. In addition, as the situation unfolds, a dynamic
research interest is to develop techniques to assess sn ai e additio n s the u inl dynasic
potential courses of action (COAs) against the and volatile adversary can drive the friendly decision
adversarial environment. Utilizing HPC technology, process, without much opportunity to evaluate potential
multiple force structure simulations can be dynamically outcomes.
executed in parallel to concurrently evaluate the There has been significant research in recent years
hypothesis of assessing a given COA against a range of relating to automating the wargaming process to attempt
adversarial eCOAs. The uncertainty of the adversary to shorten the decision cycle. Unfortunately, these

decision process requires simulation capabilities that conventional wargaming simulations typically execute a

spawn multiple simulations from critical decision points pre-scripted sequence of events for an adversary,
to evaluate alternative eCOAs. The focus of this paper is independent of the opposing force. In addition,
on the development of a simulation framework that conventional wargames focus on traditional attrition-

provides the foundation for faster than real-time parallel based force-on-force modeling, whereas modem

COA simulations. Within this framework is a requirement campaign strategies employ and evaluate a mixture of

to be able to dynamically allocate and reallocate kinetic and non-kinetic operations. One such campaign

resources in an HPC environment. The authors will approach being pursued within the Air Force is effects-

describe techniques to clone and create variant based operations (EBO). EBO is an approach to

simulations in real-time and the dynamic system planning, executing, and assessing military operations that
requirements and use of HPC nodes, focuses on the effects produced from military activities,as opposed to the direct result of attacking targets [31. A

significant challenge for EBO is predicting and assessing
1. Introduction how friendly actions result in adversary behavioral

outcomes, and how those behavioral outcomes impact the
Military campaign planning is a rigorous process that adversary commander's decisions and future actions. For

includes many man-months of preparation and analysis. wargame simulations to be effective in an effects based
The process of determining the most likely actions and arena, they must allow users to evaluate multiple ways to
reactions in operational situations attempts to encompass accomplish the same goal with a combination of direct,
both friendly and adversary decisions. The sequence of indirect, and cascading events (actions). Wargames must
decisions and actions, from a friendly or an adversary also be dynamic, in that the adversary force will react to
perspective, that are accomplished related to a mission, friendly force actions in an unscripted manner. Current

U.S. Government Work Not Protected by U.S. Copyright 244

wargame simulators are incapable of assessing an effects- provides the means for distributing and coordinating
based campaign approach and do not account for dynamic simulations running on multiple CPUs. I By running
adversarial behavior. multiple parallel simulations simultaneously, we seek to

apply the maximum computing power to the problem at

2. Objective hand. Also, leveraging this software suite will help us
build the system much faster.

Analysis systems are needed in the military strategic
planning process to anticipate and respond in real-time to 3.1. The Emulation.

a dynamically changing battlespace with counter actions. I
Our research interest is to develop techniques to assess The key to applying simulation technology in real-
potential COAs against the adversarial environment, time is to maintain a simulated "mirror image" of the real

Utilizing HPC technology, multiple force structure world situation at all times. This simulated version of the

simulations can be dynamically executed in parallel to real world can be used as the starting point for evaluating
concurrently evaluate the hypothesis of assessing a given COAs and for simulating into the future to help predict

COA against a range of eCOAs141. The uncertainty of the what might happen. We refer to the simiiulated mirror
adversary decision process requires simulation image as the emulation. The emulation is a parallel
capabilities that spawn multiple simulations from critical simulation running at wall-clock (i.e., real-time) speed

decision points to evaluate alternative eCOAs. The that is continually fed intelligence, suryeillance, and
desired goal is to establish a means to evaluate the COA reconnaissance (ISR) reports so that it reflects the state of
for critical elements related to execution and timing as the battlespace to the extent known. The emulation will

well as overall effectiveness in the presence of a range of run continuously on k processors of an n-CPU HPC; the
adversarial possibilities that may occur. remaining n-k processors will be available to run COA

The focus of this paper is on the development of a evaluations or predictive simulations. For example, if our
simulation framework that provides the foundation for HPC has 256 CPUs and the emulation occupies 8 CPUs,
faster than real-time parallel COA simulations. The the remaining 248 CPUs will be available for performing
Synchronous Parallel Environment for Emulation and COA assessments.
Discrete-Event Simulation (SPEEDES) framework was The SPEEDES external module facility is a key
chosen to be the foundation on which to build the system component for building the emulation. I The external
because it helps exploit available high computational module is a separate program attached to a simulation (it
resources and provides much needed functionality. This communicates with the simulation using sockets). It has
framework must be able to dynamically allocate and the ability to: send/receive messages to/from the
reallocate resources in an HPC environment. Notionally, simulation, control the time advance of the simulation,
an initial emulation, or basis simulation, could be running kill the simulation, etc. The external miodule is the
in the real-time environment on 4-6 nodes. At critical conduit through which ISR reports can be inserted into
decision points, the emulation can be cloned and the the emulation. Primarily, this will be done by scheduling
cloned simulation would rapidly execute into the future to events on simulation objects, which can alter the objects
evaluate the possible outcomes of a particular decision as desired. Also, there will be facilities for creating new
branch. The simulation clones require the HPC objects or deleting existing ones. These mechanisms
environment to dynamically allocate resources, as each provide the capabilities needed to integrate ISR reports
decision branch will require additional HPC resources. into the emulation state.
There is uncertainty with respect to the resource
requirements throughout the entire analytical process, but 3.2. Simulation Cloning.
the framework being developed will allow the simulation
to take advantage of all resources available. The authors After researching several design approaches to
will describe the techniques to clone and create variant creating copies of the emulation for alternative COA
simulations in real-time and the dynamic system analysis, we selected the "cloning approach". Cloning a
requirements and use of HPC nodes. simulation means creating a running 'opy of the

simulation, preferably on a separate group of "free" CPUs
3 (i.e., processors with little or no workload). For example,Methodology if a simulation is running on CPUs 1-8 on a 128-CPU

machine, we might clone a copy onto CP]Ls 9-16. The
In this section, we will describe our approach for clone will be an exact duplicate of the original and will

building a system to assess possible COAs and eCOAs. produce identical results as the original. By cloning the
The first thing to note is that the system is based on the emulation and allowing it to run as fast as po ssible, we get
SPEEDES parallel simulation framework. SPEEDES

245

a glimpse into a possible future; this is what we call a
predictive simulation. To simulate a COA, we clone the N Co A/ode U

emulation and insert information into the clone (see/ Co1 o]
Figure 1). This information defines the COA to be ode U

simulated. Co Node m

Cf Launch First

COAf2 COA41 Emulation Two Evaluations

Simulation Simulation Clone

Itep I Copy Nodes Step 2: nsert Comms Lnks

Figure 2. Schematic of cloning procedure
Battespace

J Reports Another reason for wanting such a utility is because it
is somewhat simpler to duplicate the configuration of the

Figure 1. Cloning emulation for COA evaluation parent simulation in the clone. Ideally, the emulation will
be run with a favorable configuration (in particular, all

Leaving aside the usual complications that inevitably nodes linked with shared memory communications), and
accompany software modifications, the basic procedure all clones will simply replicate this topology. However,
for cloning a simulation is straightforward. Each since it may not always be possible to find a set of CPUs
SPEEDES node is copied onto an available CPU (using with the desired topology, the mechanism must be
fork () or a similar utility), creating n child nodes; then capable of cloning a simulation onto any set of n CPUs
the n child nodes are connected with a new set of (where n is the number of SPEEDES nodes in the parent
communications links (shared memory and/or TCP/IP simulation; this fixed number of nodes constraint will be
sockets), see Figure 2. Once the child nodes are sewn discussed below).
together with communications links, the clone simulation
is integrated and can run forward to the designated time. 3.3. COA Evaluation.

An important issue to be dealt with is controlling
where each child node is run. One reason this is a In order to run a COA evaluation, we need to alter
concern is we would like to determine which nodes can the clone so that it simulates the COA instead of just
communicate through shared memory. The typical HPC duplicating the parent simulation. All that is required to
consists of groups of CPUs (called compute nodes) that accomplish this is to pass a list of commands to the clone.
can access shared RAM. A 128-CPU machine, for Each command instructs a specific object to perform a
example, might be composed of 16 compute nodes given action at a specific time; in aggregate, these
containing 8 CPUs each. Only processes on the same commands define a COA.
compute node can communicate through shared memory There is a simple mechanism for inserting such a list
(which is much faster than socket communications). into the clone. First, the user provides the list (in some
SPEEDES simulations can be configured to use shared form) to the interface for requesting COA evaluations.
memory communications where available. To maximize This request is sent to the emulation and converted into an
performance, we need to maximize the number of shared event that acts on a special EvaluationManager object.
memory links; but this requires the ability to specify the This object stores the list and then initiates the cloning
CPU on which each child node runs. What is needed is a process, which creates a copy of each node (e.g., using
utility like that provided by Beowulf Cluster software, - fork ()). This copies all data in each node (which is a
bprocrfork (int cpuID)- which copies a process process), including the list of commands. In this way, the
and migrates it to a specified CPU. list is transferred to the clone. The EvaluationManager

object in the clone takes the list and uses it to schedule a
series of events that simulate the agenda of commands.
Meanwhile, the EvaluationManager object in the parent
simulation can just delete the list in order to save space.

246

One part of the cloning design which requires 4. Application
explanation is the constraint that the clone and parent
simulations have the same number of nodes. In theory, The simulation framework provides the foundation
there is no reason why the clone cannot have a different for faster than real-time parallel COA imulations. As
number of nodes from that of the parent. However, this described previously, COA analysis or wargaming is the
would mean redistributing the simulation objects over the process of performing "what if' analysis of actions and

child nodes, which would be difficult and complicated, reactions designed to visualize the flow of the battle and

Also, since one can usually find a good fit of nodes to a evaluate each friendly COA. Utilizing the developed

given application, there probably won't be a great deal of methodology, along with performing "what if' analysis in

utility in dynamically varying the number of nodes in the anthPC e v onment af fors the ity t al uate

clone. Because of this, we opted for the simpler design of fn C gaint a rne oeors. th raeP ~friendly COAs against a range of eCOAs. This range of
keeping the number of nodes fixed. adversarial COAs goes well beyond the "most likely" and

"most dangerous" COAs as previously described. It will
3.4. Managing HPC Resources. encompass a dynamic adversary that responds in an

intelligent manner based on friendly actions and
In order to get the best performance out of our adversary models.

system, mechanisms are needed to manage available There is a significant amount of uncertainty that
resources. The most important of these is available CPUs, accompanies any adversarial modeling capability. This
but we also need to keep track of socket ports and shared uncertainty encompasses the process of decision making
memory. To manage CPUs and ports, our system will use in a dynamic situation. Typically, models are abstractly
a ResourceAllocator server. This program will begin by created to reflect the adversary's beliefs, goals and
reading in a file that describes the HPC and designates a intentions, which are based on friendly 'interpretation of
set of port numbers available for use. The HPC the adversary. The uncertainty of the adversarial decision
description will specify the number of available CPUs and process makes it necessary to evaluate friendly COAs
list their IDs. Also, it will define the shared memory against a range of eCOAs. You can imagine, based on
topology of the machine by listing groups of CPUs that interpretations of the adversary, that numerous reactions
can share RAM. are possible in response to a friendly action. It's these

The ResourceAllocator will manage the action/reaction dynamics that we are trying to capture

allocation/deallocation of CPUs and ports. For example, within the COA analysis process. , By simulating
when the user asks for a COA evaluation, a request for n numerous COAs prior to and during engagement, it may
CPUs and one port will be sent to the ResourceAllocator. be possible to estimate outcomes of adversary actions
If these resources are available, the request will be immediately after they are accomplished within an
granted, and the COA evaluation can go forward using the operational situation. This will allow decision makers to
granted resources; otherwise, it must wait. When the better respond during execution. In' the following
evaluation completes, it sends a message to the sections, we will describe examples of the application of
ResourceAllocator, returning the resources. In this way, the developed methodology and the rquirements for
the ResourceAllocator always knows which CPUs and dynamic resource requirements in an HPC environment.
ports are available for use.

The rationale for this process is to control the 4.1. Static Resource Availability for COA
workload on each CPU so as to attain optimal (or at least Evaluation.
good) performance. If we do not carefully balance the
number of processes with available CPUs, some CPUs Consider an example where we ,would like to
will become overloaded and slow the progress of one or evaluate two friendly COAs against a range of eCOAs.
more simulations. Thus, our plan is to map each process Let's assume we are limited to a 64 CPU HPC resource.
to its own CPU. These processes will be simulation If we t lie C fo emU we ouldnodes or SpeedesServers (the latter manages TCP/IP If we choose to utilize 4 CPUs for emulation, we would

nodes oneedses (the si lattes managbetwees etCPP be limited to 15 parallel COA evaluations, see Figure 3.
modules and simulations). Remember the requirement discussed in Section 3.3, that

m odue d suto beach simulation clone requires the exact same number of
The other resource to be managed is shared memory. CPsa h mltin aharw inteF.r

Where possible, SPEEDES uses shared memory for CPUs as the emulation. Each arrow i the Figure

intemode communications since it is much faster than represents a distinct COA/eCOA analysis. In thisexample we are evaluating 8 distinct eCOAs against
sockets. Since shared memory is limited, we must make friendly COA#l and 7 distinct eCOAs against friendly
sure to return allocated shared memory to the operating COA#2. The constraint of 64 CPUs limits the number of

system when each simulation completes, decision points, which can be evaluated with respect to

247

the adversary, to three. Each decision point represents an decisions points could be unlikely, but the analyst is only
adversary's reaction as a result of a friendly action. As limited by the amount of computational resources
one can imagine, there is a range of decisions that must be available. Not only will the increased resources allow the
evaluated after each action/reaction within COA analysis analyst to pursue more responses to a particular friendly
and limiting ourselves to three may cause a potentially COA action, it will also allow analysis of more decision
dangerous adversary decision to be overlooked, points. We were limited to three decision points in the
However, even though the static HPC resources applied in previous example. It is possible to imagine that the
this example limits the number of adversary reactions simulation of 2 COAs on 8 CPUs could easily expand to
within COA/eCOA analysis, the mechanism and hundreds or even thousands of parallel analysis requiring
methodology being developed is a significant enormous HPC resources. We don't, however, know how
improvement over current wargaming technologies, many resources will be required at the beginning of the

analysis. There are many unknowns associated with the
Adversarial Models Decision points COA analysis and decision space and having access to

(ceCOA) dynamic HPC resources allows for greater versatility
when performing the analysis. Here, we have only

COA#l exemplified 2 planned friendly COAs, consider the
necessity of evaluating many friendly COAs against many

.. y adversary COAs, the HPC requirements could beWhat-if Analysis

15 COA Evaluations enormous.

COA#2 R4.3. Dynamic Resource Availability for
Real time Predictive Simulation.
ISR feeds Emulation t

CPU's Required: 4 12 20 36 64 The previous examples discussed the utilization of
Figure 3. Simulation cloning example HPC resources from a static perspective, i.e., evaluating

planned friendly COAs against a range of adversarial
In this example, we demonstrated the need for possibilities. This would be accomplished prior to plan

increased CPU resources during the analysis. However, execution. The first example was constrained by limited
there will be situations where some of the COAs converge HPC resources, whereas the second exemplified the need
or are extremely unlikely, in which case they need to be for greater dynamic resource availability. There is a
pruned, and CPU resources would be made available for requirement, however, for analysts to be able to
additional COA analysis. The COA/eCOA analysis continuously assess changing conditions during execution
process will be a continuous give and take of HPC and anticipate future events. The ever changing dynamics
resources. of operations, as well as the difficulty of modeling the

adversarial decision process, requires continuous plan
4.2. Dynamic Resource Availability for COA evaluation and prediction. This is a much more dynamic
Evaluation. application of the methodology along with HPC resource

allocation. The concept of mirroring the state of the

Now, let's assume we have HPC resources available battlespace within emulation is consistent as before. The

in a dynamic environment. Same example as before, we major difference is utilizing the emulation as a starting

want to simulate two COAs but are not limited by the point for parallel predictive simulation, vice COA

number of available CPU resources. We'll also assume evaluation. Here, the concept would be to constantly

that the COA analysis is being performed on 4 CPUs mirror the ongoing operation and race ahead in time to

each. By having more resources available, it would be evaluate possible futures, given the current state of the

possible to evaluate more branches at each decision point, operation, along with plans and tactics, as best known.

In the previous example, we only evaluated two high This allows for dynamic situational assessment,

probability responses to each friendly action. Where comparison of the actual verses planned COA, as well as

having dynamic resources available will be of benefit is providing alerts to the decision makers on new threats or

when the level of uncertainty is greater within the opportunities. This will allow analysts to be able to

adversary model. This may occur in a situation with an anticipate and respond in real-time to a dynamically

extremely volatile adversary, or where little is known of changing battlespace with counter actions and determine

the adversary decision process. Having more resources whether engagement results are consistent with

available allows the analyst to pursue many alternate predictions.

decisions within the COA analysis process. Many of the The previous examples utilized 4 CPU's for
emulation as well as for each COA simulation. In a more

248

dynamic execution situation, there may be a desire to can be applied during the Effects Based Operations
utilize even more resources. Of course, this will be driven (EBO) planning process, as well as in a predictive
by the potential latency verses speedup associated with dynamic situation. In either application, Idecision makers
utilizing many more CPUs. The dynamics of resource will have a better vision of the future battlespace as well
allocation may be even greater than during the planning as an increased awareness of the impact of decisions
process. As each new event occurs in the battlespace, or when evaluating an adversarial situation. Both are
as more intelligence information surfaces, the analyst may necessary in the ever changing dynamis of adversarial
want to estimate potential futures based on this new situations and the ability to stay within the adversary
information. There will be a continuous demand for more decision loop.
resources, based on the constantly changing emulation
state. In addition, because of the constantly changing 5.1. Conclusion.
emulation state, there will be constant pruning of
simulations, which release HPC resources. The A framework and concept for dynamic resource
simulations become obsolete due to the adversary's allocation in an HPC environment has'been described.
decisions and actions. The simulation process is based on This is a major shift from current HPC utilization
a range of adversary decisions, and not specifically one procedures. It brings to the forefront the necessity to have
decision. In this instance, resources will have to be resources available, at any given moment. The examples
released as the obsolete simulations are pruned, and described here were related to COA/eCOA analysis. The
repopulated with the emulation state to again race ahead requirements for dynamic HPC resource allocation will
in time to estimate possible futures, continue to grow in the future. The necessity for real-

time decision making in the presence of enormous
5. Summary quantities of data, and a dynamic volatile adversary, is

one such example. To realize a future ofi information and
The innovative application of HPC technology decision superiority, HPC resources will continue to be

provides the foundation to utilize analytical simulations in pushed beyond current operating procedures.
static as well as dynamic fashion. This is a major
paradigm shift in the use of simulation technology, i.e., References
moving from static to dynamic simulations. The
methodology allows for the evaluation of alternatives 1. Joint Publication 1-02, Department of Defense Dictionary of
when considering the adversarial environment, prior to Military and Associated Terms, March 2004. ,
and during operational engagement. The concept also 2. Joint Publication 3-30, Command and Coitrol for Joint Air
provides the capability to accept current real-time Operations, June 2003.
information and be able to rapidly peer into the future at 3. McCrabb, Maris J., "Concept of Operations for Effects-Based
any given moment. Operations." Aerospace Command, Control iand Intelligence,

In a military application, this capability can be Surveillance, and Reconnaissance Center, Langley AFB, VA,
applied such that a simulation tool could emulate the February 2002.
current operating picture, and be able to rapidly peer into 4. Surman, Joshua, Robert Hillman, and Eugene Santos, Jr.,
the future at any given moment and assess possible "Adversarial Inferencing for Generating Dynamic Adversary
COAs. The application of dynamic resources available in Behavior." Proceedings of the SPIE 17th Annual International
an HPC environment affords the opportunity for faster Symposium on Aerospace/Defense Sensing and Controls:
than real-time parallel COA simulations. This technology AeroSense 2003, Orlando, FL, April 2003.

249

